

Universitas Gadjah Mada

Universitas Gadjah Mada

Conventional Gas Vs. CBM

Conventional Gas	Coalbed Diffusion through micropores by Fick's Law. Darcy flow through fractures.	
Darcy flow of gas to wellbore.		
Gas storage in macropores; real gas law.	Gas storage by adsorption on micropore surfaces.	
Production schedule according to set decline curves.	Initial negative decline.	
Gas content from logs.	Gas content from cores. Cannot get gas content from logs.	
Gas to water ratio decreases with time.	Gas to water ratio increases with time in latte steges.	
Inorganic reservcir rock.	Organic reservoir rock.	
Hydraulic fracturing may be needed to enhance flow.	Hydraulic fracturing required in most of the basins except the eastern part of the Powder River basin where the permeability is very high. Permeability dependent on fractures.	
Macropore size: ⁰ 1µ to 1 mm	Micropore size: ⁰ <5A° to 50A°	
Reservoir and source rock independent.	Reservoir and source rock same.	
Permeability not stress dependent.	Permeability highly stress dependent.	
Well interference detrimental to production.	Well interference herps production. Must drill multiple wells to develop.	

Universitas Gadjah Mada

Outline

• Overview

- Adsorption (Gas content)
- Porosity
- Permeability (Cleat system)
- Gas Flow

Levine, 1990

CBM- 8

- Reserve Analysis
- Dynamic reservoir
- Enhanced recovery

Management Reservoir

anagement Reservoir

Management Reservoir

BM- 9

Universitas Gadjah Mada

Universitas Gadjah Mada

Universitas Gadjah Mada		Universitas Gadjah Mada
Gas in-place (GIP)		
 GIP= A x CT x d x GC A : area or distribution of coal being estimated CT: coal thickness d : density GC: gas content 		End
	Moore, 2010	
Management Reservoir	CBM- 28	Management Reservoir CBM-29