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Outline Pore

* Gas in coals is thought to occur mainly in the adsorbed state, as a monomolecular
layer 0.4 nm thick on the pore surfaces

* The adsorbed layer accounts for 90-98% of total gas content with the remaining
* Porosity small amount of gas (2-10%) in the gaseous state, within the open pore spaces (e.g.

C B M Rese rVOl r macro-pores, fractures) (Gray, 1987)

Coal porosity is the void space of this naturally fractured organic rock, which has a
Porosity and permeability wide spectrum of pore sizes (Seidle, 2011)

Separation of coal void space into cleat and matrix porosities for reservoir
engineering purposes is artificial but useful

A typical of naturally fractured reservoirs has cleat or fracture porosity on the order
of 1% or less (Reiss, 1980) and coal matrix porosities measured in laboratory studies
are typically varying from 2.5 to 18 % (Anderson et al., 1956)
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Pore Dual porosity and permeability system Pore volume and surface area
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Fig.1 - Schemaic cross-section of a porous solid Butt-Cleat Matrix
1 cm? coal pore = 3 m2 surface area

IUPAC, 1994 Fekete 2006, Moore, 2010,2014
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Total pore volumes Coal porosity Coal porosity
* Gan et al (1972) * low-rank coals (< 75% fixed carbon content) is primarily due to macro-pores; 2% 1
. \ 1
© Micro-pore: less than 1.2 nm, » medium-rank coals (fixed carbon between 76% and 84%) are comprised Pl .
©Meso-pore: 1.2 to 30 nm mainly of micro and meso-pores; poroehy E
M -| : ter than 30 . . - . ® °
o Vacro-pore: greater than S8 nm * high-rank coals (fixed carbon > 85%) porosity is mostly due to micro-pores ; s
IUPAC (R | L 1994 (Gan et al., 1972; Seidle, 2011). 8 5
. ouquerol et al. . . . ) - g k]
) (Roug ) ! ) * Total porosity decreases with rank, primarily due to a decline in macro and & é
o Micro-pores: diameters less than 2 nm R R . . 2
) meso-pore while micro-pore volume increased with coal rank (Clarkson and
o Meso-pores: diameters between 2 to 50 nm X 3 samplo n
) Bustin, 1999). [ Saie
o Macro-pores: diameters greater than 50 nm 0 T T T T T T
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Rodrigues and Sousa, 2002 Clarkson and Bustin, 1999; Moore, 2012
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Coal density and porosity measurements L True density
[re— s
« Coal density was determined using helium (He) and Mercury (Hg). : o B et * True density, apparent density, particle density, bulk density, and in-place density.
eV = 1 rili e eniceps * The true density of coal is the mass divided by the volume occupied by the actual,
P PHg  PH, pore-free solid in coal
Perle Characirists
v = 100pog (pL — pl ) & B * The precise d:te;lmiga:onhoftrue density requirsshcomrl)lste filling of the pore
Hg He structure with a fluid that has no interaction with the solid.
* The total pore volume accounted by Hg density is substantially less than that * No fluid meets these requirements completely.
derived from He density. ’ " : "
* Helium has traditionally been considered as the best choice
* With respect to the difference on total pore volume accounted from He Vi A T * Part of the pore system may be inaccessible to the helium. Thus, when helium is
density and Hg den'5|tyf respeC“Ve'Vf rise the concept that (1) macro- and R g e T S e used as the agent for determining coal density, the density (helium density) may
meso-pore system is accessible to Hg under pressure and (2) micro-pore i il vt S S e differ from the true density and may actually be lower than the true density.
system that is inaccessible to Hg but accessible to He (Speight, 2005). e e
et pe memmbetion e Speight, 2005
Apparent density Bulk density Effect of coal porosity (cleat) on well production

* The apparent density of coal is determined by immersing a weighed sample of
coal in a liquid followed by accurate measurement of the liquid that is
displaced (pycnometer method).

« For this procedure, the liquid should (1) wet the surface of the coal, (2) not
absorb strongly to the coal surface, (3) not cause swelling, and (4) penetrate
the pores of the coal.

« It is difficult (if not impossible) to satisfy all of these conditions, as evidenced
by the differing experimental data obtained with solvents such as water,
methanol,carbon tetrachloride, benzene, and other fluids.

* Thus, there is always the need to specify the liquid employed for the

determination of density by means of this (pycnometer) method
Speight, 2005

(A)
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* The bulk density is the mass of an assembly of coal particles in a container
divided by the volume of the container

* |t depends on true density, particle size and size distribution, particle shape,
surface moisture, and degree of compaction.

Gas Production Rate (Mecfiday)
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Zarrouk and Moore, 2009
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Outline

* Permeability (Cleat system)
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Cleat Cleats and shear fractures

« Systematic fracture in coal is called as cleat (Dron, 1925 vide Laubach et al., 1998)

* Cleats are fractures that usually occur in two sets that are, in most instances,
mutually perpendicular and also perpendicular to bedding (Laubach et al., 1998)

* Closely spaced tension fracture normally perpendicular to bedding often in
orthogonal sets

» Seams may also contain shear fractures related to regional compression these are
often not perpendicular to bedding and contain obvious evidence of shearing ie fine
coal and striations
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The main changes coal as rank increase Cleat spacing decrease as rank increase
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Relation among face-cleat spacing, permeability, and aperture assuming parallel-plate model Cleat patterns and potentia| sources of anomalous cleat attributes
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Absolute permeability

* Is a function of the coal itself
* In coal, this is primarily associated with the cleat system

s L * Darcy’s flow
H s 2 QuPgjil
: k= 2l
: o | A(P{—P;
£

* where, k= permeability, (mD); Q,= volumetric rate of flow at reference
pressure P,, (cm3/sec); P,= reference pressure, (Pa); u= fluid viscosity (cp); L=
length of core sample, (cm); A= cross-section area of core sample, (cm?); P,=
upstream pressure, (Pa); P,= downstream pressure, (Pa).
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Gas production from varying saturation

Effect of gas saturation and permeability

Permeability variation in Sydney/Bowen basins
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William, 2007

William, 2007

There a huge variations between areas. Even in a single area where there are a lot of measurements, permeability remains

the single most uncertain parameter. Inherent variabilty is rarely smaller than an order of magnitude William, 2007
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Effect of permeability on production curve Permeability Permeability vs. effective stress
* When permeability is measured it is dependent upon the stress on the coal at that o — o] s o . ‘
* The main reason permeability reduces with depth is the response to increasing i w\\ i Y:ﬂmm\\s . ,m.m\\\\\
stress H £ — | ol S
os £ 22 ,"\\\
5 * The actual stress on the coal is called B o1 o TS
i N D 7 T % 7 T S T,
"% Effective Stress = Rock Stress (Formation pressure) — Reservoir Pressure o G . R, 5, = S
g
Time {years)
Anggara, 2014 Panal., 2010
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Matchstick geometry representation of a coal seam Permeability change due to decreasing pressure Cross over of Permeability and Gas content with depth
a. CH, primary production scheme: a.l initial 5 ‘ i T T 160 800
condition; a.2 increasing effective stress caused % ShDumican el e
by drawdown pressure and it’s resulting ” | S Pelmenienion okl 149 ‘/4-/"/ 0
. . — Robertson-Christiansen model ] T
decreasing aperture width thus permeability is - ; 3. 129 g 600
decreasing; a3 CH, is desorbed during i | 2 % 10.0 /’ 500 E_
drawdown pressure resulting matrix shrinkage £ B sl * | | i g
and finally permeability is rebound at certain z 25 \ A 4
pressure. b. ECBMR by CO, injection scheme: g2 & B 99 S T 200 g
b.1 initial condition; b.2 permeability reduction s N . 3‘; ° a0 /\+ . 200 &
caused by CO, sorption induced-strain; b.3 when i S i 20 Fioy
CO, is injected into coal reservoir, push back
phenomenon is occurred and resulting rebound ‘ Uumu a0 6 o ok
permeability (model was drawn based on Seidle o
etal. (1992); Shi and Durucan (2005). 0 200 400 600 800 1000 1200
Average pore pressure, psia
Fig. 11 — Model comparison of permeability changes for methane
2:;'."9 through an “average” coal core as pore pressure is low- Offsstting parameters )
Robertson and Christiansen, 2006 Gas Content Normally Increases With Depth, Permeability Normally Decreases William, 2007
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Relative permeability
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