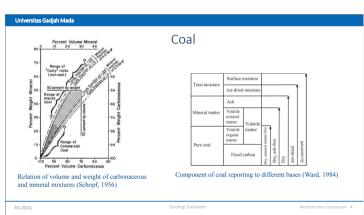
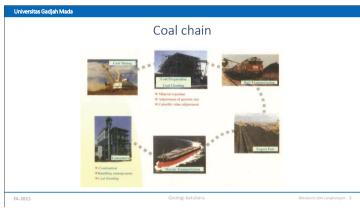

Universitas Gadjah Mada


Batubara dan Lingkungan


Ferian Anggara

Outline

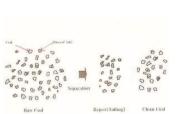
- Coal cleaning technology
- · Acid mine drainage
- Spontaneous combustion
- CO₂ Geological storage



Universitas Gadjah Mada

Sulfur

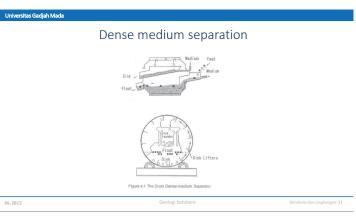
- The one constituent that most affect coal marketing (except ash and CV)
- Three type of sulfur:
 - Pyritic sulfur (iron sulfide-FeS, pyrite-FeS₂, isometric and marcasite-FeS₂, orthorombic)
 - Sulfate sulfur (H₂S)
 - Organic sulfur

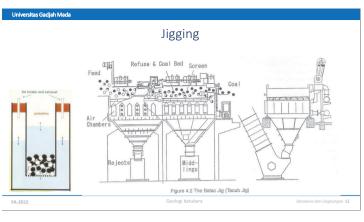

Universitas Gadjah Mada

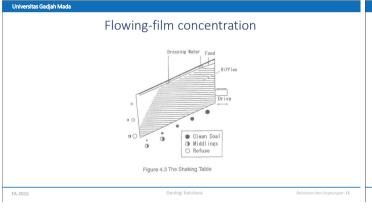
FA-2015

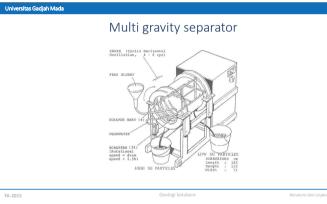
Coal cleaning technologies

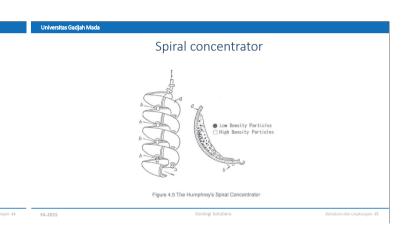
- A set of operation involved in processing raw coal into a form meeting market or consumer requirements
- Including 3 steps:
- a. Coal cleaning
- b. Sizing-crushing or screening
- c. Special treatment for commercialization (e.g. mixing or blending, briquetting or pelletizing, fluidization, as well as dewatering and upgrading of low rank coal)

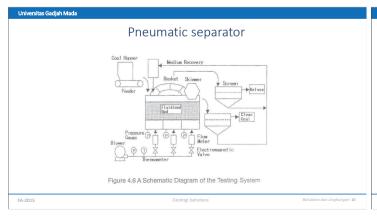

Universitas Gadjah Mada

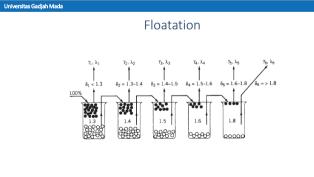



Geologi batubara


Geologi batubara

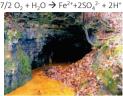






Acid mine drainage (AMD)

- AMD is caused when water flows over or through sulfur-bearing materials forming solutions of net acidity.
- AMD comes mainly from abandoned coal mines and currently active mining.
- Mine drainage is metal-rich water formed from chemical reaction between water and rocks containing sulfur-bearing minerals
- Mine drainage is formed when pyrite, an iron sulfide, is exposed and reacts with air and water to form sulfuric acid and dissolved iron.
- Some or all of this iron can precipitate to form the red, orange, or yellow sediments in the bottom of streams containing mine drainage
- The acid runoff further dissolves heavy metals such as copper, lead, mercury into ground or surface water
- The rate and degree by which acid-mine drainage proceeds can be increased by the action of certain bacteria.


1915 Geologi batubara Botubara den Lingkungan-17 FA-2015 Geologi batubara Botubara den Lingkungan-18

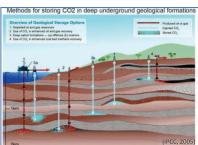
Universitas Gadjah Mada

Universitas Gadiah Mada

Problem associated with AMD

- · Contaminated drinking water
- Disrupted growth and reproduction of aquatic plants and animals
- Corroding effects of acid on parts of infrastructure such as bridges
- FeS₂ + 7/2 O₂ + H₂O → Fe²⁺+2SO₄²⁻ + 2H⁺

Universitas Gadjah Mada


Spontaneous combustion

- Spontaneous combustion, or self heating, of coal is a naturally-occurring process caused by the oxidation of coal
- Natural oxidation is uncontrolled and can lead to emissions and spontaneous combustion
- Properties which influence the propensity of coal to self-heat include volatile content, coal particle size, rank, heat capacity, heat of reaction, the oxygen content of coal and pyrite content
- Tends to increase with decreasing rank
- Greenhouse gas emissions (CO2 and CH4) from low temperature oxidation and spontaneous combustion in coal mines

FA-2015

Universitas Gadiah Mada

Geological storage

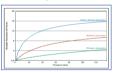
- Geological CO₂ sequestrations (GS) offer potential for large scale, lowcost, and long-term sequestration
- 2. Four options for GS: (1) oil and gas reservoirs, (2) deep saline formations. (3) unminable coal beds and (4) mineral carbonation

Universitas Gadjah Mada

The benefits of Geological Storage

- 1.doesn't depend on climate condition
- 2.doesn't compete with agriculture, forestry, fishing, other industries and land
- 3.the cost transporting is cheap
- 4.the technology is well developed and widely practiced,
- 5.no associated environmental problem and can be safely undertaken within national boundary.

FA-201


Universitas Gadjah Mada

Universitas Gadjah Mada

Unminable Coal Seam

- CO₂ injection into coal seams can displace methane, thereby enhancing CBM recovery ECBM).
- 2. ECBM increase produced methane to nearly 90% of the gas, (50% by conventional recovery)

- Coal swells as CO₂ absorbed which reduces permeability and injectivity
- · Cap rock leakage caused by injection pressure

FA-201

Universitas Gadjah Mada

CBM Production ☐ Proses "dewatering"

☐ Inieksi CO₂ ke reservoir CBM

- ✓ Meningkatkan produksi methane: CO₂ enhanced coal.
- ✓ Sebagai salah satu opsi menyimpan CO₂ di formasi geologi: CO₂-geological storage

Tipikal kurva produksi CBM dan ECBM

FA-2015

Universitas Gadjah Mada

Universitas Gadjah Mada

Coal seams as CO₂ geological storage

- ☐ Primary CBM production
- ☐ Injection of CO₂ into coal seams:
 - √ Give added value of enhanced coal bed methane recovery (CO₂-ECBMR)
 - ✓ Safe and permanently storing CO₂ over geologic time
- ☐ Geological storage (GS): an option to store CO₂ storage in large enough quantities over long geological periods of time

Development of stable, affordable and environmentally friendly in term of natural resources

Potential of CO₂-ECBMR location Feasibility study

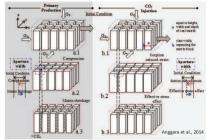
 suitable gas content o CO, emissions sources existing support facilities

- adequate permeability o basin maturity
- o ability to dewater the formation
- o suitable coal geometry
- o simple structure, homogeneous, laterally
- continuous and vertically isolated coal seam
- o adequate depth
- o coal rank Location

seismic activity

Geologi batubara

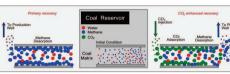
Geologi batubara



Universitas Gadjah Mada

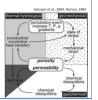
FA-2015

Matchstick geometry representation of a coal seam


Geologi batubara

a. CH₄ primary production scheme: a.1 initial condition; a.2 increasing effective stress caused by drawdown pressure and it's resulting decreasing aperture width thus permeability is decreasing; a.3 CH₄ is desorbed during drawdown pressure resulting matrix shrinkage and finally permeability is rebound at certain pressure. b. EGBMR by CO₂ injection scheme: b.1 initial condition; b.2 permeability reduction caused by CO₂ sorption induced-strain; b.3 when CO₂ is injected into coal reservoir, push back phenomenon is occurred and resulting rebound permeability (model was drawn based on Seidle et al. (1992); Shi and Durucan (2005).

Universitas Gadjah Mada


Problem identification

- ☐ CO₂ adsorption is higher compare to CH₄ at given pressure
- --> to displace CH₄ (+++)
- -> to induce coal swelling: permeability reduction

Changes in permeability

FA-2015 Geologi batubara Batubara dan Lingkum

Universitas Gadjah Mada

End

FA-2015 Geologi batubara